
OptMatch: Optimized Matchmaking via Modeling the
High-Order Interactions on the Arena

Linxia Gong1, Xiaochuan Feng1, Dezhi Ye1, Hao Li1, Runze Wu1,
Jianrong Tao1, Changjie Fan1, Peng Cui2

1Fuxi AI Lab, NetEase Inc., Hangzhou, China
2Tsinghua University, China

{gonglinxia,fengxiaochuan,yedezhi,lihao01,wurunze1,hztaojianrong,fanchangjie}@corp.netease.com,
cuip@tsinghua.edu.cn

ABSTRACT
Matchmaking is a core problem for the e-sports and online games,
which determines the player satisfaction and further influences the
life cycle of the gaming products. Most of matchmaking systems
take the form of grouping the queuing players into two opposing
teams by following certain rules. The design and implementation
of matchmaking systems are usually product-specific and labor-
intensive.

This paper proposes a two-stage data-drivenmatchmaking frame-
work (namely OptMatch), which is applicable to most of gaming
products and has the minimal product knowledge required. Opt-
Match contains an offline learning stage and an online planning
stage. The offline learning stage includes (1) relationship mining
modules to learn the low-dimensional representations of individ-
uals by capturing the high-order inter-personal interactions, and
(2) a neural network to incorporate the team-up effect and predict
the match outcomes. The online planning stage optimizes the gross
player utilities (i.e., satisfaction) during the matchmaking process,
by leveraging the learned representations and predictive model.

Quantitative evaluations on four real-world datasets and an on-
line experiment on Fever Basketball1 game are conducted to empir-
ically demonstrate the effectiveness of OptMatch.
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1 INTRODUCTION
Matchmaking arranges multiple players into player-versus-player
(PvP) competitions. With large number of players requesting the
gaming service and indicating their availability, the matchmaking
system forms teams for queuing players and brings up every two
teams into one combat.

Matchmaking is ubiquitous in the sporting events, especially
in e-sports and online games. Most matchmaking systems in the
market are skill-based[1, 7, 8, 12, 19] or feature-based[3, 4] and
require profound industrial knowledge for the product designers.

To facilitate the matchmaking mechanism design, this paper
investigates the high-order inter-personal interactions on the arena,
and proposes a generalized data-driven matchmaking framework
OptMatch that gives optimized matchmaking results based on the
captured interactions.

Heroes Relationship

Synergy:

Suppression:

win together

defeat

lose togetherVSTlose Twin

Figure 1: Relationships between individuals in one match.

In terms of high-order interactions on the arena, intuitively, an
individual can be complementary, incompatible or even suppressive
to others because of their abilities difference, competing styles or
social effects. These mutual impacts are revealed by match outcome
as shown in Figure 1, and the interpersonal interactions can be then
identified throughout the numerous collected matches.

In order to acquire the high-order interactions among individ-
uals, OptMatch concludes two types of relations from the match
records to represent the tacit interplay of players, i.e., (1) synergy
relation built from the win/lose together relationship, and (2) sup-
pression relation indicating the advantage of one over another. In
addition, OptMatch adopts an attention-based model that explicitly
incorporates the intra-team and inter-team interactions to predict
the match results and players’ utilities. Finally, during the online
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service, OptMatch uses a heuristic planning method combined with
the interactions and patterns learned from past matches, to optimize
the future matchmaking results.

In summary, the main contributions of this paper include:
• a generalized data-driven matchmaking system that opti-
mizes the match qualities and player utilities;

• two interpersonal relations for representing and understand-
ing tacit coordination interactions among players;

• corresponding graph embedding methods to incorporate the
high-order interactions, together with the comparison of
various graph embedding algorithms;

• a model to encode team-up effect and predict the match
outcome.

• a github page2 that contains the datasets and models men-
tioned in the paper.

The empirical results show that OptMatch gains an improvement
of 6% ∼ 17% in the offline prediction tasks for the match outcomes
on four real-world datasets, and an improvement of around 40% in
the match quality during an online experiment.

2 RELATEDWORK
2.1 Team Formation and Matchmaking
Extensive prior research has studied the matchup strategies to
form comparable teams for each competition. The mainstream
matchmaking strategies are skill-based and concentrate on building
accurate skill rating systems. In this case, one player is assignedwith
one score that describes her absolute strength. This ability score
is usually derived from the probabilistic algorithms like Bradley-
Terry, ELO, Glicko, TrueSkill [1, 7, 8, 12, 19], and their extensions
[5, 13, 17, 18, 24, 31]. The ability of the team is then modeled as the
summation of the team members’ scores.

Considering that using a single scalar is an oversimplification,
subsequent strategies [4] extend the skill-based models to incor-
porate additional player information by inputting players’ feature
vectors and some [3] propose new model structures to take into
account the domain-specific concerns.

Meanwhile, some strategies [16, 25, 26] look into the cooperative
effect in the team composition. They aim to study the interplay be-
tween a player’s performance improvement (resp., decline) through-
out matches in the presence of beneficial (resp., disadvantageous)
teammates by computing the pairwise strength weights between
individuals.

The existing work mostly emphasizes the tracking of individual
skills, either by inferring the synthetic ability score, or by construct-
ing feature vectors based on expert knowledge. Some other research
about the interpersonal effects limits to the pairwise influence and
analyzes only players or heroes in each experiment. Despite the
efforts of depicting individual abilities and mutual interplay, the
exploitation of the high-order interactions among the heroes and
players is inadequately studied.

2.2 Graph Embedding
Representation learning on graphs has been proposed to transform
instances in topological space into fixed-size vectors in Euclidean

2https://fuxiailab.github.io/OptMatch/

space, in which geometric distance reflects their structural simi-
larity. The widely applied graph embedding approaches include
FM [22], DeepFM [11], DeepWalk [6, 21], Node2vec [10], LINE [27],
SDNE [29], Struc2Vec [23]. Factorization based methods [11, 22] are
computationally expensive and cannot be implemented in parallel.
The other methods, learn the representation vectors of vertices
based on the comparison of the neighborhoods of them.

In the use cases of this paper, the graphs are usually densely-
connected, but the homophily hypothesis (i.e., nodes that are highly
interconnected and belong to similar network clusters or communi-
ties should be embedded closely together, adopted by [6, 10, 21, 29])
on the graph is not always valid. In addition, the local structure
of the vertices [23] is not the focus of this paper. Therefore, we
adjust the graph embedding method of LINE [27] to learn the latent
representation of vertices in this paper.

3 PROBLEM DEFINITION
3.1 Online Games and E-sports Preliminaries

• Hero: the graphical representation of the user in the virtual
worlds. It usually takes a three-dimensional form of character
in games.

• PVP: Player(s)-versus-player(s), is a type of multiplayer in-
teractive conflict within a game between two or more live
participants. It is used to describe any game, or aspect of a
game, where players compete against each other.

3.2 Matchmaking
We define the matchmaking into two stages: the offline learning
stage to learn the patterns from past matches; an online planning
stage to optimize the players’ satisfaction for future matches.

3.2.1 Offline Learning. Given a dataset with𝑀 observedmatches,
a population of heroesH = {ℎ1, ..., ℎ𝐻 } and playersP = {𝑝1, ..., 𝑝𝑁 }
are involved. In each game, two disjoint teams competed with each
other, which are denoted as𝑇𝑤𝑖𝑛 ,𝑇𝑙𝑜𝑠𝑒 by the outcome. For simplic-
ity, we assume each team has𝑘 members, where𝑘 = |𝑇𝑤𝑖𝑛 | = |𝑇𝑙𝑜𝑠𝑒 |.
Offline learning aims to grasp the relations among the individu-
als (heroes/players) from the 𝑇𝑤𝑖𝑛 , 𝑇𝑙𝑜𝑠𝑒 records, and identify the
competition patterns throughout the matches.

3.2.2 Online Planning. In practice, matchmaking is applied to
a pool of players P𝑡 = {𝑝1, . . . , 𝑝𝑛}, who are waiting to start the
𝑘-vs-𝑘 matches at the moment 𝑡 . The goal of matchmaking is to
find the optimal assignments for players to maximize the total
utility (i.e., the gross players’ satisfaction). With U𝑚 denoting the
utility gained by the match𝑚, the system makes the match-making
decision to maximizing

∑𝑀
𝑚=0U𝑚 for the matches it creates. Mostly,

the utility U𝑚 of one single game is regarded as the accumulation
of its players’ utilities

U𝑚 =

𝑛𝑚∑
𝑖=0

U𝑚,𝑖 (1)

The player utility refers to a quantitative measure of a player’s satis-
faction gained from a match, for example, the reverse of churn risk
for this player after a certain match. This requires the matchmaking
system to pick right teammates and good opponents for as many
players as possible.
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Figure 2: The OptMatch System framework. (a) shows the structure of the two-stage iterative matchmaking system, with
arrows to indicate its data flows and request flows. (b) shows the iterative offline learning phase, which contains the feature
engineering (handcrafted features building and auto feature mining from relationships), and the model updating. (c) shows
the online planning phase that matches up the players to start games.

3.3 Game Outcome
In each game, a team’s outcome 𝑜𝑡 can be observed in two forms:
the binary indicator of win/loss (𝑜𝑡 ∈ {+1,−1}), or the value of
score (𝑜𝑡 ∈ R).

With richer information about the game, the 𝑜𝑡 of score record
is usually preferred when it’s available. Conventional methods for
utilizing the score information are to predict the score difference
values. This leads to two limitations: firstly, it constrains the data
aggregation among the datasets with scores and the datasets with
only binary results; and secondly, the fitting values are greatly
influenced by the magnitude of the score measure designs and the
competitive intensity of each game. For example, a game with a
score of 0vs10 should be different from a game with a score of
90vs100 intuitively but they are treated the same if only score
difference is concerned.

For the aforementioned considerations, we convert the outcome
into its relative form: (the ˆ symbol denotes the ground truth values,
for distinguishing them from the model prediction values in the
latter sections)

𝑜rela = ± |𝑜𝑤𝑖𝑛 − 𝑜𝑙𝑜𝑠𝑒 |
|𝑜𝑤𝑖𝑛 | + |𝑜𝑙𝑜𝑠𝑒 |

(2)

where the sign of the relative outcome is determined by which
team it refers to (+1 for the winning team and −1 for the losing
one). This relative outcome unifies the two forms of observed game
results, rescales the team score values to the range [−1, +1], and
keeps the binary results in {+1,−1} that can be interpreted as a
special scenario of the former form.

3.4 Graph Embedding in Matchmaking
Graph Embedding. Similar to [27], in matchmaking problem, a
graph is defined as G = (V, E), whereV is the set of vertices, each
representing an individual (hero or player) and E is the set of edges
between the vertices, each representing a relationship between two
individuals. Each edge 𝑒 ∈ E is an ordered pair 𝑒 = (𝑎, 𝑏) and is
associated with a weight that indicates the strength of the relation.

Given a graph, graph embedding aims to represent each vertex
𝑣 ∈ V into a low-dimensional space R𝑑 , i.e., learning a function
𝑓𝐺 : V → R𝑑 , where 𝑑 ≪ |V|. In the space R𝑑 , the first-order
proximity and the second-order proximity between the vertices are
preserved.

First-order Proximity. The first-order proximity in a graph is
the local pairwise proximity between two vertices. For each pair
of vertices linked by an edge (𝑎, 𝑏), the weight on that edge 𝑤𝑎,𝑏
indicates the first-order proximity between 𝑎 and 𝑏 [27].

In the matchmaking and competition context, the first-order
proximity implies the compatibility of two individuals, i.e.,𝑤𝑎,𝑏 > 0
implies the beneficial interplay between the two heroes/players,
while𝑤𝑎,𝑏 < 0 implies the disadvantageous interplay.

Second-order Proximity. The second-order proximity between
a pair of vertices (𝑎, 𝑏) in a graph is the similarity between their
neighborhood graph structures. Let 𝑝𝑎 = (𝑤𝑎,1, . . . ,𝑤𝑎, |V |) denote
the first-order proximity of 𝑎 with all the other vertices, then the
second-order proximity between 𝑎 and 𝑏 is determined by the simi-
larity between 𝑝𝑎 and 𝑝𝑏 (if no vertex is linked from/to both 𝑎 and
𝑏, the second-order proximity is 0) [27].

Likewise, in the matchmaking context, the second-order proxim-
ity implies that individuals who share similar compatible/incompatible
teammates, or share similar suppressive opponents, tend to be sim-
ilar to each other.

4 MATCHMAKING SYSTEM
PvP competitions usually involve two opposing teams in many
sporting events and online games. In the context of e-sports and
online games, players compete by controlling selected heroes, each
of which is designedwith different strengths andweaknesses.While
in traditional sports, in one sense, each player can be considered as
one hero to fit in the OptMatch system.

4.1 System Overview
The OptMatch system consists of two phases: offline learning and
online planning. The offline learning phase contains:
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• Hero2Vec learns the low-dimensional representations of heroes
that incorporates their relationship in the competitions. The
embedding vectors that represent different relations can be
trained separately and parallelly.

• Player2Vec constructs the representation vectors of players
based on the hero representations learned in Hero2Vec, as
well as the features built from players’ records.

• OptMatch-Net model takes the players’ representations and
team-up information to predict the match results. The model
incorporates the inter-player interactions and learns the
competition patterns.

The online planning service, afterwards, leverages the representa-
tion vectors of players and OptMatch-Net model to maximize the
(predicted) gross utilities for the queuing players.

4.2 Hero2Vec
4.2.1 GraphConstruction. To grasp the interplay among heroes
in Figure 1, we first need to extract and construct the relationship
graphs that reflect their mutual impact. In the intense and fast-paced
competitions, tacit coordination plays a larger role than verbal
communication [15]. Also, the complementary data of chatting or
friendship is usually hard to acquire. Considering these reasons, we
focus only on the relationships that can be refined from the match
records. After the examination of the match characteristics, we
identify two types of relations out of the two opposing 𝑘-individual
teams 𝑇𝑤𝑖𝑛 , 𝑇𝑙𝑜𝑠𝑒 , as shown in Figure 3:
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(a) Synergy Graph
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(b) Suppression Graph

Figure 3: The relationship graphs of heroes in Fever Bas-
ketball dataset, where the node size is proportional to
its occurrence frequency and link width to the relation
strength. (a) Synergy graph represents the compatibility of
heroes, wherein the orange links are associated with pos-
itive weights and the gray with negative weights; (b) Sup-
pression graph represents the advantage/disadvantage that
a hero has over another, with the arrows indicating the sup-
pressing relation.

a) Synergy Graph Construction. Synergy describes the com-
patibility between heroes, which is defined as the beneficial (resp.,
disadvantageous) relation between two heroes when they both

showed up in the winning (resp., losing) side of the match. To con-
struct the synergy graph, we go through the winning and losing
teams respectively and build an edge between each pair of heroes.
The edge weight is defined as:

𝑤
𝑠𝑦𝑛

𝑎,𝑏
= 𝑓 𝑤𝑖𝑛

𝑎,𝑏
− 𝑓 𝑙𝑜𝑠𝑒

𝑎,𝑏
(3)

where 𝑓 𝑤𝑖𝑛
𝑎,𝑏

refers to the times when the heroes (ℎ𝑎 ,ℎ𝑏 ) co-occurred
in the winning teams throughout the collected matches, while 𝑓 𝑙𝑜𝑠𝑒

𝑎,𝑏

refers to the co-occurrence of the heroes (ℎ𝑎 ,ℎ𝑏 ) in the losing teams.
Therefore, the synergy graph is a signed undirected graph.

b) Suppression Graph Construction. Different from the syn-
ergy relation above, suppression is a directional relation, which
indicates that one hero ℎ𝑎 defeated another hero ℎ𝑏 . The weight
for an order pair (𝑎, 𝑏) is defined as:

𝑤
suppr
(𝑎,𝑏) = 𝑓(𝑎 defeat𝑏) (4)

where 𝑓(𝑎 defeat𝑏) is the times when the hero 𝑎 defeated the hero 𝑏,
and vice versa for the link weight𝑤 suppr

(𝑏,𝑎) .

4.2.2 Graph Embedding. After building the graphs that repre-
sent the structural relationships among heroes, we start to train the
function to project the heroes into low-dimensional vectors while
maintaining the necessary information in the meanwhile.

a) Graph Embedding on Synergy Graph (a signed undi-
rected graph): As the Synergy Graph has both positive and neg-
ative connections, the graph embedding method in [27] and the
signed proximity term proposed in [14] is adopted to learn the
compact low-dimensional representation of the heroes.

The first-order proximity in the Synergy Graph. We formulate the
joint probability between hero 𝑎 and hero 𝑏 as:

𝑝1 (𝑎, 𝑏) = 𝜎 (®𝑒𝑇𝑎 · ®𝑒𝑏 ) =
1

1 + exp(−sign(𝑎, 𝑏) · ®𝑒𝑇𝑎 · ®𝑒𝑏 )
(5)

where ®𝑒𝑎 ∈ R𝑑 is the low-dimensional embedding vector of vertex
𝑎. Meanwhile, its empirical probability can be defined as

𝑝1 (𝑎, 𝑏) =
|𝑤𝑎,𝑏 |∑

(𝑎,𝑏) ∈E |𝑤𝑎,𝑏 |
(6)

To preserve the first-order proximity, we need to minimize the
distance between the two distributions 𝑝1 and 𝑝1. By choosing the
KL-divergence as the distance measure and omitting the constants,
we get the objective function:

𝑂1 = −
∑

(𝑎,𝑏) ∈E
|𝑤𝑎,𝑏 | · log𝑝1 (𝑎, 𝑏) (7)

The second-order proximity in the Synergy Graph. The second-
order proximity in [27] assumes that vertices sharing many neigh-
borhoods are similar to each other. That is, each vertex is treated
as a specific "context" and vertices with similar distributions over
the "contexts" are assumed to be similar. We use the vector ®𝑒𝑎 to
represent vertex 𝑎, and ®𝑒 ′𝑎 to represent the "context" of vertex 𝑎. For
each edge (𝑎, 𝑏), the probability of "context" ®𝑒 ′

𝑏
generated by vertex

®𝑒𝑎 is formulated as:

𝑝2 (𝑏 |𝑎) =
exp(sign(𝑎, 𝑏) · ®𝑒′𝑇

𝑏
· ®𝑒𝑎)∑ |V |

𝑘=1 exp(sign(𝑎, 𝑘) · ®𝑒
′𝑇
𝑘

· ®𝑒𝑎)
(8)

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2303



By combining the empirical distribution 𝑝2 (𝑏 |𝑎) = |𝑤𝑎,𝑏 |∑
𝑘∈𝑁 (𝑎) |𝑤𝑎,𝑘 |

with 𝑁 (𝑖) denoting the out-neighbors of vertex 𝑎, and the KL-
divergence function, we get the objective function:

𝑂2 = −
∑

(𝑎,𝑏) ∈E
|𝑤𝑎,𝑏 | · log 𝑝2 (𝑏 |𝑎) (9)

Then the first-order proximity and second-order proximity in
the Synergy Graph can be preserved during the graph embedding,
by jointly training the objective function (7) and (9).

The signed proximity term 𝑠𝑖𝑔𝑛(𝑎, 𝑏) ·®𝑒𝑇𝑎 ·®𝑒𝑏 and 𝑠𝑖𝑔𝑛(𝑎, 𝑏) ·®𝑒
′𝑇
𝑏
·®𝑒𝑎

are the signed inner product of two vectors, introduced by [14]. For
positive connected nodes, likelihood value increases as the inner
product increases. Negative and noise pairs, on the other hand, have
higher likelihood value when the inner product similarity is lower.

b) Graph Embedding on Suppression Graph (an unsigned
directed graph): Note that the first-order proximity is only appli-
cable for undirected graphs, not for directed graphs. This fits the
intuition that a pair of heroes (ℎ𝑎 , ℎ𝑏 ) who has pairwise suppres-
sive relation doesn’t show the local proximity. Therefore, only the
second-order proximity is preserved in the Suppression Graph.

The graph embedding on the Suppression Graph defines the
probability distributions and minimizes the objective function as
follows:

𝑝2 (𝑏 |𝑎) =
exp(®𝑒′𝑇

𝑏
· ®𝑒𝑎)∑ |V |

𝑘=1 exp(®𝑒
′𝑇
𝑘

· ®𝑒𝑎)

𝑝2 (𝑏 |𝑎) =
𝑤𝑎,𝑏∑

𝑘∈𝑁 (𝑎) 𝑤𝑎,𝑘

(10)

𝑂2 = −
∑

(𝑎,𝑏) ∈E
𝑤𝑎,𝑏 · log𝑝2 (𝑏 |𝑎) (11)

By learning {®𝑒𝑖 }𝑖=1,..., |V | and {®𝑒 ′
𝑖
}𝑖=1,..., |V | that minimize the ob-

jective (11), we get the d-dimensional vector ®𝑒𝑖 to represent each
vertex 𝑖, 𝑖 ∈ V .

Note:Apart from the graph construction and embeddingmethod
above, many other ways to count the link weights and learn the
vertex embedding are available in the matchmaking scenario. The
comparison of various network construction and embedding meth-
ods is provided in Appendix B.

4.3 Player2Vec
Player2Vec constructs the representation vectors for players, which
includes the handcrafted features that identified and calculated
from the players’ profiles, as well as the relational representation
vectors that are learned from relationship mining.

4.3.1 Player Feature Vector. As the traditional machine learning
methods do, we calculate several indexes that imply the ability of
players andmake an effect on the competition outcome. The indexes
are usually designed by the experts in the domain and are greatly
case-specific. An example of feature design that we implemented
on the Fever Basketball dataset is given in the Appendix B.1.

4.3.2 Player Representations in the Hero Spaces. In the other way,
we project the players into the subspaces that encode the hero
relationships respectively. For the use cases of sports and the game

modes where players compete with fixed heroes, we can simply
employ the vectors of heroes to represent the players.

For the game modes with selectable heroes for players, the pro-
jection can be performed by building and learning a heterogeneous
graph that contains the several relationships among players, among
heroes and inbetween. Whereas, for the concern of deployment
efficiency, we adopt a straightforward solution, which projects the
players through average-pooling over their hero-selection to en-
code the players’ preference, and the hero-mastery to encode their
proficiency. For each player, we have the representation vectors as

®𝑢 = Concat(®𝑢pick , ®𝑢win)

®𝑢pick =

𝐻∑
ℎ=1

𝑝
pick
ℎ

· ®𝑒ℎ , ®𝑢𝑤𝑖𝑛 =

𝐻∑
ℎ=1

𝑝𝑤𝑖𝑛
ℎ

· ®𝑒ℎ
(12)

in both synergy subspace and suppression subspace (denoted as
®𝑢syn and ®𝑢suppr for latter reference). In (12), 𝑝pick

ℎ
is the pick rate

of hero ℎ, and 𝑝𝑤𝑖𝑛
ℎ

is the pick rate of hero ℎ when we investigate
only the winning matches of this player.

4.4 OptMatch-Net
OptMatch-Net model is to predict the utility of the match𝑚, defined
as (1). Work like [4] computed utilityU𝑚 by predicting the utility of
every playerU𝑚,𝑖 in the match one by one. In our work, we simplify
the computation by adopting the assumption that fair games lead
to better player experience. Thus we reformulate the utility of a
match U𝑚 in equation (1) into the drawn probability of the match:

U𝑚 = 𝑃𝑚 (𝑑𝑟𝑎𝑤𝑛) = 1 − |𝑜rela | (13)

With (13), we design the OptMatch-Net as in Figure 4. Note that
OptMatch-Net is able to compute the match utility U𝑚 in (1) with-
out the simplification, by slightly changing the structure as [4].

Team Comparison Layer

Team2Vec Layer

Team Comparison Layer

Team2Vec Layer

Team Comparison Layer

Team2Vec Layer

P1 … Pk Pk+1 … P2k

T1 T2
T2T1

Tanh

h

Weighted Sum
Synergy Embedding
Suppression Embedding
User Features Vector

(a) OptMatch-Net (b) Team2Vec Layer (c) Team Comparison Layer

! = #$%&'

MatMul

Scale

SoftMax

MatMul

Q K V

P1, …, Pk

Subtract

MatMul

Figure 4: The OptMatch-Net model to evaluate the match-
making quality.

4.4.1 Input Layer. With the players’ representation vectors learned
in 4.3, we start to learn the collective representations of each team
and compare the two teams by their team representation vectors.

As the input of OptMatch-Net model, two teams of players
𝑇1 = {𝑝1, 𝑝2, . . . , 𝑝𝑘 },𝑇2 = {𝑝𝑘+1, 𝑝𝑘+2, . . . , 𝑝2𝑘 } are given, and each
player has several embedding vectors (that is, relational embedding
vectors ®𝑢syn, ®𝑢suppr and player feature vector ®𝑢ftr).

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2304



To facilitate the model training efficiency and interpretability,
the players’ embedding vectors sets(i.e., 𝑈 syn,𝑈 suppr and𝑈 ftr) are
fed into the model separately to get a prediction value respectively.
The final output is the weighted sum of those prediction values.

4.4.2 Team2Vec Layer. Precedent literature [4, 12] treated the team
as the simple summation or concatenation of its members. Instead,
we utilize a multi-head self-attentive mechanism proposed by [28]
to incorporate the intra-team interactions to construct the represen-
tations of a team.

Particularly, given a team of players with their embedding vec-
tors𝑈 where𝑈 ∈ {𝑈 syn,𝑈 suppr,𝑈 ftr}, we compute the output after
the multi-head attention function as:

𝑥 = [®𝑢1, · · · , ®𝑢𝑘 ]

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇√
𝑑𝐾

)𝑉 , 𝐾 ∈ R𝑑𝐾

MultiHead(𝑄,𝐾,𝑉 ) = Concat(ℎ𝑒𝑎𝑑1, · · · , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑜

where ℎ𝑒𝑎𝑑𝑖 = Attention(𝑥𝑊𝑄

𝑖
, 𝑥𝑊𝐾

𝑖 , 𝑥𝑊
𝑉
𝑖 )

(14)

And finally with the multi-head attention output, we feed it into
a neural network with a Relu activation function[9], to generate
the 𝑑team-dimensional representation vector of the team:

®𝑇 = Relu(𝑊 ·MultiHead(𝑄,𝐾,𝑉 ) + 𝑏), ®𝑇 ∈ R𝑑team (15)

where𝑊 is the weight matrix, 𝑏 is the bias vector, and ®𝑇 refers to
the team representation.

In the competition circumstances that we studied, there are no
different restrictions between the two teams. Hence, the parameters
of the Team2Vec layer are shared between𝑇1 and𝑇2. In other cases,
however, when the two teams have different goals such as attacking
and defensing, the layer parameters shall not be shared.

4.4.3 Team Comparison Layer. This layer aims to compare the abil-
ities of the two teams and predict the competition result. Classical
win prediction models, such as ELO and Bradley-Terry[1], estimate
the probability of the pairwise comparison result based on their
pre-evaluated capabilities:

P(𝑖 beats 𝑗) = 𝑐𝑖

𝑐 𝑗 + 𝑐𝑖
(16)

where 𝑐𝑖 , 𝑐 𝑗 ∈ R+ are the capability values of 𝑖 and 𝑗 , and (𝑖, 𝑗 ) can be
two competing individuals or groups. According to Blade-Chest[2],
the formula (16) can be transformed as:

P(𝑖 beats 𝑗) = exp(𝛼𝑖 )
exp(𝛼𝑖 ) + exp(𝛼 𝑗 )

=
1

1 + exp(−(𝛼𝑖 − 𝛼 𝑗 ))
= 𝜎 (Δ(𝑖, 𝑗))

(17)

where 𝛼𝑖 represents the strength of player 𝑖 , 𝜎 (·) is the sigmoid
function, and Δ(𝑖, 𝑗) is the matchup function that measures the edge
given to player 𝑖 when matched up against player 𝑗 . In the Bradley-
Terry algorithm, it is modeled as Δ(𝑖, 𝑗) = 𝛼𝑖 − 𝛼 𝑗 , the difference
of capability values between two players. While the Blade-Chest
algorithm extends (16) to incorporate additional player information,
by modeling each player’s strength as a weighted sum 𝛼𝑖 =𝑊

𝑇 ®𝑢𝑖 ,
the matchup function turns to be

Δ(𝑖, 𝑗) =𝑊𝑇 (®𝑢𝑖 − ®𝑢 𝑗 ) (18)

On the other hand, in our task, the competition results take the
form of relative score difference between the two teams, which
from another perspective can be seen as the empirical probability
distribution of the advantage of 𝑖 over 𝑗 :

Â(𝑖 beats 𝑗) = 𝑜rela =
𝑠𝑖 − 𝑠 𝑗
𝑠𝑖 + 𝑠 𝑗

Â ∈ R, −1 ≤ Â ≤ 1 (19)

where 𝑠𝑖 and 𝑠 𝑗 are the scores of two teams.
To fit the empirical probability distribution form in (19), we adjust

the win probability definition in (16) and (17) into the advantage
probability as

A(𝑖 beats 𝑗) =
𝑐𝑖 − 𝑐 𝑗
𝑐 𝑗 + 𝑐𝑖

=
exp(𝛼𝑖 ) − exp(𝛼 𝑗 )
exp(𝛼𝑖 ) + exp(𝛼 𝑗 )

=
exp(𝛼𝑖 − 𝛼 𝑗 ) − 1
exp(𝛼𝑖 − 𝛼 𝑗 ) + 1 = tanh(Δ(𝑖, 𝑗))

and tanh(𝑥) = exp(2𝑥) − 1
exp(2𝑥) + 1

(20)

where the matchup function Δ(𝑖, 𝑗) should have the properties:
• when Δ(𝑖, 𝑗) → +∞, A(𝑖 beats 𝑗) → 1
• when Δ(𝑖, 𝑗) → −∞, A(𝑖 beats 𝑗) → −1
• when Δ(𝑖, 𝑗) = 0, A(𝑖 beats 𝑗) = 0

As the matchup function Δ(𝑖, 𝑗) in (18) satisfies the aforemen-
tioned requirements, we simply build the team comparison layer
with a neural network that gives the prediction:

𝑜rela = tanh(𝑊𝑇 ( ®𝑇1 − ®𝑇2) + 𝑏) (21)

where the ®𝑇1 and ®𝑇2 are the representation of two competing teams,
yielded by the Team2Vec layer.

4.4.4 Output Layer. On each embedding vectors set 𝑈 , where𝑈 ∈
{𝑈 syn,𝑈 suppr,𝑈 ftr}, the corresponding team representations (®𝑇1, ®𝑇2)
and comparison prediction 𝑜rela can be computed.

Each prediction value can be viewed as a team strength difference
measure from one perspective. To learn a comprehensive team
comparison result, we leverage the weighted summation of all the
predictions. The output of OptMatch-Net is then

𝑦 = 𝑤 syn ∗ 𝑜 synrela +𝑤
suppr ∗ 𝑜 supprrela +𝑤 ftr ∗ 𝑜 ftrrela (22)

where the weights 𝑤 syn, 𝑤 suppr and 𝑤 ftr are learned during the
training as well.

4.4.5 Objective Function. With the different forms of match results
available in the dataset, OptMatch-Net fulfills different tasks and is
trained with different objective functions.

a) For relative score difference task, the match result𝑦𝑖 ∈ (−1, 1) is
a continuous value, therefore OptMatch-Net takes the mean square
error as the loss function, i.e., L(𝑜rela) = 1

𝑁

∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2.

b) For win prediction task, the match result 𝑦𝑖 ∈ {−1, 1} is a
binary result, therefore OptMatch-Net takes the hinge loss as the
loss function, i.e., L(𝑤𝑖𝑛) = ∑𝑁

𝑖 max(0, 1 − 𝑦𝑖 · 𝑦𝑖 ).

4.5 Online Planning
The goal of online planning is to ensure high-quality matchups in
every game, or at least as many games as possible.

Additionally, as one matchmaking service request usually in-
volves 102 to 103 players and is required to be responded in ≤ 100ms,
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the exhaustive search is infeasible. In this case, we apply a heuristic
method to split players queue into several units each of which has
𝑛𝑚 players, by the players’ ability ranking tiers. On a unit of 𝑛𝑚
players, we acquire several match-up candidates based on the team
formation methods in [30], which are proved to be ex post Pareto
efficient. Then we predict the gross utility of those 𝑛𝑚 players for
each match-up candidate with OptMatch-Net, and keep the max-
imum value as the utility U𝑚 together with the corresponding
match-up candidate as the matchmaking assignment.

5 DATASETS
5.1 Dataset Statistics
Public and industrial datasets are used to measure the performance
of OptMatch. The statistics of datasets are given in Table 1.

Table 1: Statistics of the datasets

Dataset Matches Heroes Players

Dota2 (5v5) 50,000 113 10,815
LOL (5v5) 187,588 139 43,706

NBA 3,342 / 949
Fever Basketball (3v3) 851,648 40 33,873

Public Datasets:
• Dota2, LOL(League of Legends) are datasets of the famous
5v5 Multiplayer Online Battle Arena (MOBA) games, in
which players control heroes of different abilities to fight.
Dota2 contains 50,000 matches, 113 heroes and 10,815 play-
ers. LOL(League of Legends) contains 187,588 matches, 139
heroes and 43,706 players.

• NBA contains 3,342 matches3 of 2018-2019, with the top
points, top rebounds and top assists players of each game
(949 basketball players in total).

Industrial Dataset:
• Fever basketball is an online basketball game4 released by
Netease. We work on the competitive 3v3 ranking mode and
collect a large-scale dataset of recent matches. The dataset
contains 851,648 matches, 40 heroes and 33,873 players.

5.2 Dataset Split
Matches are sorted by the time for each dataset. Then we take
the first 80% matches as the training set and the remaining 20%
matches as the test set. The feature vectors and network embeddings
of players are learned from the records in the training set. This
ensures no leak of result information from the test set.

6 EXPERIMENTS
Extensive experiments are conducted to compare our algorithm
with state-of-art algorithms and demonstrate the effectiveness of
the proposed framework.

Details of the experiments setting are given in appendix B.

3https://rapidapi.com/api-sports/api/api-nba
4https://chao.163.com/index.html

6.1 Performance of OptMatch-Net
6.1.1 Baselines. OptMatch-Net is compared with five methods:

• LR [20]: A linear model with logistic loss.
• XGBoost [26]: A scalable tree-based model for feature learn-
ing and game outcome prediction.

• BalanceNet [4]: A multi-layer neural network method widely
deployed in online games.

• Blade-Chest [2]: A model that incorporates the intransitivity
in competition and predicts the match results.

• HOI [16]: A factorization based model which takes pair-
interaction of players into consideration.

6.1.2 Model Variants. As the team comparison layer adopts a
simple form in OptMatch-Net, we investigate only the contribution
of the team2vec layer, which employs the attention mechanism.

• OptMatch-Net-no-attention: A variant that uses average-
pooling to replace the self-attention mechanism.

6.1.3 Evaluation Metrics. For datasets(Dota2, LOL and NBA) with
only binary result marks (win/loss) available, Accuracy(Acc) is used
to measure the models.

For dataset(Fever Basketball) with both team scores and win/loss
flags available, we perform two prediction tasks: win prediction
and relative score difference prediction. Accuracy (Acc) is used as
the evaluation metric for the former task, and Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE) for the latter.

Additionally, we test the model trained with the score difference
on the win prediction task, which verifies the robustness and porta-
bility of our method. We define a Transfer Accuracy (Acctrans) as
the evaluation metric:

Acctrans =
1
𝑛

𝑛∑
𝑖=1
I(𝑦𝑖 = 𝐻 (𝑦𝑖 )), with 𝐻 (𝑥) =

{1 𝑥 ≥ 0
− 1 𝑥 < 0 (23)

6.1.4 Prediction Performance Comparison (Table 2). We can ob-
serve that OptMatch-Net significantly outperforms all the com-
pared baselines across all the datasets and prediction tasks. Besides,
the comparison between OptMatch-Net variants verifies the effect
of Team2Vec layer for capturing the intra-team interactions. It man-
ifests that our model adopts a more principled way to leverage
statistic features and interaction relations. Moreover, the improve-
ment on the metric Acctrans indicates the reusability and mobility
of the models.

6.2 Effectiveness of Graph Embedding
Figure 5 visualizes the representations of heroes and players.

The leftmost subfigures in 5(a) and 5(b) are the representation
vectors of heroes in the synergy and suppression space. We can see
that heroes of the same category congregate with each other while
heroes of different categories stay distant, which fits our intuitions
that those heroes of the same category are designed to be similar,
and different categories are designed to suppress one another to
some degree. If, in the application cases, a hero doesn’t behave as its
expected roles in the games, its representation vectors will appear
in the spots away from its category, with a big Euclidean distance
value. This feature helps the diagnosis of the game design.
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Table 2: Performance comparison for different methods. (The best results of baselines are indicated with *).

Algorithm Fever Basketball NBA Dota2 LOL
MAE RMSE Acc Acctrans Acc Acc Acc

LR 0.178 0.227 0.613 0.642* 0.602 0.596 0.599
XGBoost 0.184 0.233 0.639* 0.631 0.635* 0.602 0.613

BalanceNet 0.175* 0.224* 0.628 0.639 0.619 0.614 0.624
Blade-Chest 0.177 0.231 0.629 0.634 0.589 0.623 0.636

HOI 0.208 0.243 0.639* 0.640 0.597 0.628* 0.639*
OptMatch-Net-no-attention 0.172 0.222 0.648 0.653 0.637 0.645 0.655

OptMatch-Net 0.169 0.218 0.660 0.670 0.646 0.652 0.661

Players:

Center Small Forward Power Forward
Shooting Guard Point Guard

Heroes:

Players:

Heroes:

Center Small Forward Power Forward Shooting Guard Point GuardHeroes:

Center(hero)
Small Forward(hero) Power Forward(hero)

Shooting Guard(hero) Point Guard(hero)
Player

(a) Visualization of graph embedding results on Synergy graph

Players:

Center Small Forward Power Forward
Shooting Guard Point Guard

Heroes:

Players:

Heroes:

Center Small Forward Power Forward Shooting Guard Point GuardHeroes:

Center(hero)
Small Forward(hero) Power Forward(hero)

Shooting Guard(hero) Point Guard(hero)
Player

(b) Visualization of graph embedding results on Suppression graph

Figure 5: Visualization of the graph embedding results on
Fever Basketball dataset.

The two subfigures on the right of Figure 5(a) and 5(b), encode the
players into the vector space of heroes, showing that players have
diverse preference of picking heroes and proficiency in controlling.

Table 3: Model performance with only feature vectors

Algorithm Fever Basketball
MAE RMSE

LR 0.209 (↓ 17.4%) 0.254 (↓ 11.8%)
XGBoost 0.220 (↓ 19.5%) 0.253 (↓ 13.4%)

BalanceNet 0.185 (↓ 5.7%) 0.236 (↓ 5.3%)
Blade-Chest 0.204 (↓ 15.2%) 0.251 (↓ 8.6%)
OptMatch-Net 0.209 (↓ 23.6%) 0.251 (↓ 15.1%)

To verify the effectiveness of the relational representations, we
test the model performance with only players’ feature vectors. The
results in Table 3 show a performance decrease of 5.6% to 23.6%.

6.3 Online Matchmaking System Experiments
In order to assess the performance of the OptMatch framework, we
conduct online A/B tests on Fever Basketball, where we distribute
the matchmaking requests randomly into OptMatch service and
its original matchmaking service (designed with sophisticated skill
system and matchmaking rules).

Match Quality. The perceived quality of the matchmaking sys-
tem is in terms of the score difference in the matches. To evaluate
the ability of the two matchmaking systems, we compare the abso-
lute score difference and relative score difference (defined in equation
(2)) of the games assigned by the two systems respectively in Figure
6. The matches assigned by OptMatch have generally smaller score
difference, which refer to fairer games and better match quality.
With the original matchmaking system yielding matches with an
average absolute score difference of 10.108 and average relative
score difference of 0.370, OptMatch yields these indexes of 6.123
and 0.203, giving an improvement of around 40%.

(a) Distribution of Absolute Score Differ-
ence

(b) Distribution of Relative Score Differ-
ence

Figure 6: The distribution of score difference throughout on-
line matches. (Smaller value in x-axis refers to better match
quality.)

System Performance. According to the online service records,
OptMatch system takes ∼100ms in average with a setting of 4 CPU
and 16GB memory to respond to one matchmaking query.

7 CONCLUSION
This paper introduces a generalized data-drivenmatchmaking frame-
work (OptMatch) that learns the high-order interpersonal interac-
tions and optimize the player satisfaction.

The advantages of OptMatch over most prior work are that
(1) it is applicable to most of use cases, including sports, e-sports
and online games with minimal requirements for product-specific
knowledge, as the interactions OptMatch incorporates exist in most
competitions; (2) it has minimal requirements of data to work,
as only the basic team-up information and match outcome are
necessary; (3) it is sensitive and efficient to trace the data changes
by iteratively updating the players’ representation vectors as well
as the prediction model; (4) it gives the matchmaking results that
lead to optimized gross player utilities.
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A DATA ANALYSIS ON NBA DATASET
Figure 7 shows the Synergy Graph and Suppression Graph built
from the records in NBA dataset, alongside the description of typical
players in Table 4.

(a) Synergy Graph

(b) Suppression Graph

Figure 7: Relationship Graphs in NBA dataset

Several interesting observations are found here:
Synergy Graph: In online games, usually from the synergy

graph we can conclude which pairs of nodes have beneficial inter-
actions (from the orange links) when teamed up. In NBA games,
players usually stay in only one team during a match season. There-
fore, the synergy graph shows a bit different characteristics:

Table 4: List of players in NBA dataset.

player id player name team
20 Giannis Antetokounmpo Milwaukee Bucks
327 Kyle Lowry Raptors
314 Kawhi Leonard Raptors
255 Serge Ibaka Raptors
479 Pascal Siakam Raptors
527 Fred VanVleet Raptors
153 Kevin Durant Warriors
204 Draymond Green Warriors
124 Stephen Curry Warriors
514 Klay Thompson Warriors
216 James Harden Rockets
92 Clint Capela Rockets
415 Chris Paul Rockets
279 Nikola Jokic Nuggets
366 Jamal Murray Nuggets
383 Paul Millsap Nuggets
319 Damian Lillard Trail Blazers
544 Russell Westbrook Thunder
488 Ish Smith Pistons
.
.
.

.

.

.
.
.
.

(1) It tends to have local communities on the graph, as the co-
operation usually occur among a group of certain players.

(2) The size of vertices is proportional to the appearance fre-
quency of the players, and this dataset collects only the top
points/rebounces/assists players of each team in a match,
so we can speculate that players like James Harden(216),
Giannis Antetokounmpo(20) and Damian Lillard(319) had
good performance within their teams.

(3) The remarkable combination of players, i.e., the orange trian-
gle of James Harden(261), Chris Paul(415), Clint Capela(92),
is related to the fact that the team Rockets had seldom lost
the games when these three players participated.

(4) The local community of Kyle Lowry(327), Kawhi Leonard(314),
Serge Ibaka(255), Pascal Siakam(479) and Fred VanVleet(527),
corresponds to the NBA Champion of the 2018-2019 season.
It’s commented that Raptors won the champion under the
leadership of Kawhi Leonard(314) and Kyle Lowry(327), and
another three teammates are believed to have made big con-
tribution.

Suppression Graph: Unlike the suppression graph that indi-
cates the advantage of one individual over another in online games,
the suppressive relation in NBA dataset is more related to the rela-
tion that one team defeated another.

(1) The links pointing from Nikola Jokic(279) and Jamal Mur-
ray(366) to Damian Lillard(319) imply an advantage of the
team Nuggets over the team Trail Blazers.

(2) Similarly, the team Thunder had a perfect record against
the team Pistons, which is reflected by the link from Russell
Westbrook(544) to Ish Smith(488).
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B EXPERIMENT DETAILS ON FEVER
BASKETBALL DATASET

B.1 Feature Design
Table 5 lists the handcrafted features we built for players in Fever
Basketball dataset alongside their descriptions.

Table 5: Handcrafted features for prediction on the Fever
Backetball dataset. (The average operation is performed at
match-wise)

Feature Description
role_level role level of the player account

ass_num_avg average assistance
ballblk_num_avg average times of being blocked
ballpass_num_avg average passes
ballstolen_num_avg average times of being stolen
balltouch_num_avg average times of ball touching

blk_num_avg average blocks
game_times total game times

win_game_times total win game times
lose_game_times total lose game times

mentor_id_times_avg average times of mentor guidance
mvp_rate the mvp rate

overtime_rate the overtime rate
reb_num_avg average rebounces
role_score_avg average scores by player

skill_use_times_avg statistics of skill uses
steal_num_avg average steal times

three_point_fieldgoal_avg average 3-point fieldgoals
three_point_shoot_avg average 3-point shoots
two_point_fieldgoal_avg average 2-point fieldgoals
two_point_shoot_avg average 2-point shoots
wideopen_num_avg average wideopen scores

B.2 Experimental Setup
The offline/online experiments are performed in Python.

• Logistic Regression is implemented with scikit-learn Python
package5. We used SAGA as the solver for the optimization.

• XGBoost is implemented with its official Python package6.
We trained 1000 trees of maximum depth 4 with a learning
rate of 0.1 using 8 parallel threads.

• BalanceNet implements a multilayer neural network with
Keras Python package whose input is players’ feature vectors
and output is the probability/score difference that team A
wins over team B.

• Blade-Chest employs a blade layer and a chest layer in the
neural network, through which each team gets a blade vector
and a chest vector. The model predicts match outcome based
on these two vectors.

• HOI implements a factorization-based model to describe
pairwise interactions between players by tensorflow.

5https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model
6https://xgboost.ai

B.3 Comparison of Hero2Vec Methods
B.3.1 Unsupervised Hero2Vec. Various definitions of link weights
to construct the relationship graphs are available. We tried different
definitions to build the graphs and testify their effects with the
downstream prediction task. For the win/lose prediction task on
Fever Basketball dataset, Table 6 and Table 7 show the prediction
performance evaluated with prediction accuracy.

Table 6: Comparison of network construction methods for
synergy graph. 𝑓𝑤𝑖𝑛 is the times of winning together; 𝑝𝑤𝑖𝑛
is the win rate of the pair of heroes; 𝑝 ′

𝑤𝑖𝑛
is the win rate

counted only on the matches where the hero pair appeared
at one side.

Link Weight
Definition

Prediction Algorithms
LR XGBOOST OptMatch

𝑓𝑤𝑖𝑛 − 𝑓𝑙𝑜𝑠𝑒 0.619 0.615 0.639
𝑝𝑤𝑖𝑛 − 𝑝𝑙𝑜𝑠𝑒 0.594 0.617 0.625
𝑝′𝑤𝑖𝑛 − 𝑝′

𝑙𝑜𝑠𝑒
0.613 0.609 0.630

Table 7: Comparison of network construction methods for
suppression graph. 𝑓 refers to the times and 𝑝 refers to the
defeat rate.

Link Weight
Definition

Prediction Algorithms
LR XGBOOST OptMatch

𝑓(𝑎 defeat𝑏) 0.621 0.617 0.640
𝑓(𝑎 defeat𝑏) − 𝑓(𝑏 defeat𝑎) 0.601 0.607 0.619

𝑝 (𝑎 defeat𝑏) 0.618 0.619 0.630

It’s important to note that no definition of linkweights is promised
to outperform the others. Depending on the dataset, different def-
initions encode different information to some degree. It’s worth
trying different construction methods and pick the most suitable
one for a given case.

B.3.2 Supervised Hero2Vec. Another question arises naturally af-
ter looking into the offline learn phase of OptMatch: What is the
advantage of building the relationship graphs and learning the
latent vectors, comparing to adding one embedding layer in the
Neural Network? To investigate this problem, we test the prediction
performance of the OptMatch-Net model, by adopting pre-trained
embedding like claimed in the paper, and by adding an embedding
layer before OptMatch-Net. Results are provided in Table 8.

Table 8: Comparison of network embedding methods.

Embedding Category Accuracy Time Efficiency
Train Predict

Pre-trained Embedding 0.639 24.85s 5.52 × 10−7s
Embedding Layer 0.637 259.59s 0.33s

With the research in existing literature and the experiment re-
sults, we are able to conclude that pre-trained embedding vectors
lead to comparable performance with adding the embedding layer
in the neural network. Pre-trained embedding vectors can be con-
sidered somehow incorporating the expert knowledge. Besides,
with much fewer parameters to employ, methods with pre-trained
embedding vectors gain a great improvement in time efficiency.
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